
The Floral Metabolic 
Network that Produces 
Signals for Pollinators

Volume 22  Number 4
April 2017
ISSN 1360-1385

Plant Science
Trends in



Review
The Sexual Advantage of
Looking, Smelling, and
Tasting Good: The Metabolic
Network that Produces
Signals for Pollinators
Monica Borghi,1 Alisdair R. Fernie,2 Florian P. Schiestl,3 and
Harro J. Bouwmeester1,4,*

A striking feature of the angiosperms that use animals as pollen carriers to
sexually reproduce is the great diversity of their flowers with regard to mor-
phology and traits such as color, odor, and nectar. These traits are underpinned
by the synthesis of secondary metabolites such as pigments and volatiles, as
well as carbohydrates and amino acids, which are used by plants to lure and
reward animal pollinators. We review here the knowledge of the metabolic
network that supports the biosynthesis of these compounds and the behavioral
responses that thesemolecules elicit in the animal pollinators. Such knowledge
provides us with a deeper insight into the ecology and evolution of plant [445_TD$DIFF]-
pollinator interactions, and should help us to better manage these ecologically
essential interactions in agricultural ecosystems.

Flower Signals in [453_TD$DIFF]The Communication Between Plants and Their Pollinators
Outcrossing plants that rely on biotic pollination to sexually reproduce signal the presence of
floral rewards (see [446_TD$DIFF]Glossary) to animal pollen vectors with their smell and color, and reward
these visits with nectar and pollen. Color, odor, [454_TD$DIFF]and the composition of [455_TD$DIFF]nectar and pollen are
the phenotypic display of the metabolic resources of flowers that plants use in this chemical
and visual communication with their pollinators. Recent discoveries have identified new
pathways for the synthesis of floral metabolites, and new hypotheses have been formulated
concerning the accumulation of pigments and release of fragrance. Concomitantly, advances
in the field of plant–insect communication have disentangled the contribution of individual floral
signals in attracting pollinators. In this review we discuss the recent discoveries on the
biosynthesis, emission, and accumulation of floral metabolites of relevance for attracting
and rewarding pollinators, as well as their ecological and evolutionary relevance. We limit
our discussion to the most recent discoveries and refer to earlier reviews for a broader overview
on specific topics. Finally, we discuss new opportunities and as yet unsolved biological
questions that have arisen from these discoveries.

Flower Color
Secondary metabolites of the families of flavonoids, carotenoids, and betalains collectively
known as floral pigments produce the typical hues and color patterns observed in the showy
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perianth and pollen of flowers. We discuss these on a compound-class basis below and
provide a schematic overview of the sites of their cellular biosynthesis and storage in Figure 1.

Flavonoids (Figure 2A) are the pigments that contribute to the development of the widest
spectrum of flower colors. Among these, flavones, flavonols, and flavanones produce colors
that vary from white to creamy, chalcones and aurones for shades of yellow, and anthocyanins
for pink, red, and blue hues [1]. From a biochemical perspective, the flavonoid biosynthetic
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Figure 1. Biosynthetic Pathways of Pigments, Volatile Organic Compounds (VOCs), and Green Leaf Volatiles (GLVs) and Their Sites of Subcellular Storage and
Emission. The biosynthesis of Phe, Tyr, and terpenes takes place in the plastid (green oval) through the chorismate/prephenate (pathway in black) and the 2-C-methyl-
D-erythritol 4-phosphate (MEP) pathway (in blue), respectively [1,20,28–31]. Red, orange, and yellow droplets inside the plastid symbolize carotenoid pigments
(lycopene, carotene, lutein, zeaxanthin). Droplets colored in light blue represent terpenes, apocarotenoids, and GLVs, the latter being produced from the degradation of
fatty acids. Grey circles represent carriers and/or transporters and putative (labeled with a question mark) transporters of metabolites across the membrane of the
plastid. In the cytosol, the biosynthesis of flavonoids (pathway in red) from Phe produces the pigments pelargonidin, delphinidin, and cyanidin/luteolin that are shown as
red, blue, and purple droplets, respectively [3]. Betaxanthin (yellow droplets) and betacyanin (purple droplets) are synthesized from cytosolic Tyr through the betalain
biosynthetic pathway (in green) [16–18]. After glycosylation, acylation, and methylation, the pigments are transported from the cytosol into the vacuole via a process of
microautophagy [4] and/or by putative carriers (represented with grey [7_TD$DIFF]circles with a question mark). In the cytosol, Phe and phenylpyruvate contribute to the
biosynthesis of volatile benzenoids, phenylpropanoids, and phenylpropanoid-related compounds. Other VOCs produced in the cytosol are synthesized via the
mevalonate (MVA) pathway (in blue) [20]. Terpenes produced in the plastid or cytosol are further modified in the mitochondrion and ER [22,23]. In the peroxisomes,
VOCs of the class of benzenoids are produced from cinnamic acid, whereas GLVs derive from the degradation of fatty acids. The existence of specific carriers and/or
transporters for VOCs and GLVs emission has been postulated, but not yet demonstrated [42]. It is presumed that the vacuole serves as a site for subcellular storage of
VOCs and GLVs, but this has not been demonstrated. Abbreviations: DAHP, 3-deoxy-D-arabinoheptulosonate 7-phosphate; DMAPP, dimethylallyl pyrophosphate;
DOPA, dihydroxyphenylalanine; E4P, erythrose 4-phosphate; ER, endoplasmic reticulum; FPP, farnesyl pyrophosphate; G3P, glyceraldehyde 3-phosphate; GPP,
geranyl pyrophosphate; 4-HPPA, 4-hydroxyphenylpyruvic acid; IPP, isopentenyl pyrophosphate; PEP, phosphoenolpyruvate.
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pathway (Figure 1, pathway in red) links the phenylpropanoid and polyketide pathways which
provide the p-coumaryl-CoA andmalonyl-CoA units for the condensation reaction catalyzed by
CHALCONE SYNTHASE to form the precursor of all flavonoid molecules, naringenin chalcone.
Subsequent isomerization of this tetrahydrochalcone by CHALCONE ISOMERASE (CHI)
closes the C-ring to form naringenin, which is then further modified by a range of oxidation
and reduction reactions. Following their synthesis in the cytosol, flavonoids are modified by
glycosylation,methylation, and acylation, and they subsequently accumulate in the vacuole [2,3].

The physical separation of flavonoid biosynthesis in the cytosol and accumulation in the vacuole
has been known for a long time. However, the mechanism of transport between these two
compartments remained unclear until recently. Petals of Eustoma grandiflorum of the Gen-
tianaceae family (commonly known as lisianthus) that accumulate purple agglomerates of
anthocyanin vacuolar inclusions (AVI) were used to reveal that the pigments aggregate in the
cytosol and are subsequently engulfed by the vacuole via a process of microautophagy that
had not been observed in plants before [4]. Similarly, in Arabidopsis thaliana it was shown that
the physical vicinity of anthocyanin clumps to the external side of the tonoplast is sufficient to
mediate the engulfment and release of pigments into the lumen of the vacuole, and that the
process is independent from autophagy-related protein 5 (ATG5) and the endoplasmic reticu-
lum (ER) [5]. In addition to this fascinating mechanism, several specific tonoplast transporter
proteins for anthocyanins have been characterized or at least putatively identified [6], suggest-
ing that the regulation of sequestration of anthocyanins and other flavonoids in the vacuole is
highly complex.

The accumulation of flavonoids in the vacuole is very important for the color of flowers.
Variations in the pH of the vacuole induce changes in the redox state of the flavonoid molecules
which causes a shift in the spectrum of light absorbance that affects the hue of petals.
Anthocyanins, for example, are red at low pH and blue at high pH [7]. Therefore, proton
and ion transporters that create and maintain the acidity of the vacuolar lumen directly
contribute to flower color [8,9]. Degradation of floral pigments takes also place in the vacuole
in a tightly regulated developmental process. For example, a burst of vacuolar class III
peroxidase activity results in a rapid color change from deep purple to white in Brunfelsia
calycina flowers, which is why the name ‘yesterday, today, tomorrow’ Brunfelsia was given to
the plant [10,11]. Upon flower fertilization, vacuolar degradation of pigments may be induced,
presumably to discourage flower visitation by pollinators and recycle carbon to the fruits and
seeds that soon will start developing [12].

The second largest class of floral pigments are the carotenoids (Figure 2B), which are lipophilic
isoprenoid compounds that accumulate in petals and pollen, and confer yellow and red colors
to the flowers. Moreover, because carotenoids can coexist in the same tissues with flavonoids
or betalains, they also contribute to the development of the hues of brown and gold [1].
The biosynthesis of carotenoids takes place in the plastids, where two molecules of geranyl-
geranyl diphosphate (GGPP) are condensed to form phytoene (Figure 2B), which is then
converted to trans-lycopene by desaturation and isomerization reactions. Through the activity
of e- and b-cyclases or two b-cyclases, lycopene is subsequently converted to a-carotene or
b-carotene, respectively, starting from which the biosynthesis of carotenoids proceeds along
two separate branches. In flowers, carotenoids are stored in chromoplasts or oxidatively
cleaved into apocarotenoids, some of which are volatile and contribute to the scent of flowers
(synthesis of apocarotenoids is described in the [447_TD$DIFF]section Post-Transcriptional Trade-Off
Between Color and Odor).

Finally, betalains are nitrogen-containing pigments found in plant species of the Caryophyllales
andwhose presence is mutually exclusive with that of anthocyanins [13]. The chromophore and

Glossary
Associative learning: a neural
process by which pollinators
associate different stimuli, for
example color or scent, with the
presence of a reward.
Bull’s-eye: a color pattern where the
center and the margin of the flower
are concentric circles of different
colors.
Chemical and visual
communication: exchange of
information via chemical and visual
signals.
Enantiomer: molecules that are 3D
mirror images of one another.
Floral mimicry: the imitation of a
rewarding ‘model’ by a mimetic
flower, often without the production
of a reward.
Floral rewards: metabolites (mostly
sugars and amino acids, present in
nectar) and proteins (pollen) present
in a flower that are attractive for
pollinators.
Floral signals: volatiles or color (or
other traits) that have evolved to be
detected by a signal receiver
(pollinator).
Nectarguides: color or odor
patterns on the perianth that direct
pollinators to the nectar.
Perianth: non-reproductive part of a
flower, comprises petals and sepals.
Picotee: color pattern where the
distal margin of the petals have a
different color.
Phenotypic plasticity: the change
in phenotype in response to an
environmental factor.
Pollination syndrome: convergent
evolution of similar flower traits
(morphology, color, scent, nectar) in
response to selection imposed by
shared pollinators.
Positive directional selection:
stronger expression of a particular
trait (for example large flowers) that is
associated with higher fitness (e.g.,
higher seed production).
Venation: thin strips of color on the
petals.
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central metabolite of the betalain biosynthetic pathway (Figure 1, pathway in green) is betalamic
acid (Figure 2C), which is produced via oxidization of the amino acid tyrosine (Tyr). Once
betalamic acid is formed, it spontaneously reacts with amines and amino acids to form
betaxanthins, which are yellow. Alternatively, betalamic acid reacts with cyclo-DOPA to form
betanidin, the aglyconemoiety of the violet betacyanins. Glycosylation of betanidin results in the
formation of betalains, which subsequently accumulate in the vacuole. Interestingly, orthologs
of the same genes and enzymes that decorate the anthocyanins are responsible for hydroxyl-
ating betalains in the Caryophyllales [14]. In addition, the cyclo-DOPA moiety can be glyco-
sylated, which gives rise to a different set of colors, as for example the red pigmentation of the
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Figure 2. Examples of Structures of Pigments and Volatile Organic Compounds (VOCs) Produced in Flowers. (A) [440_TD$DIFF]anthocyanidins: 1, pelargonidin; 2, cyanidin; 3.
delphinidin; (B) carotenoids: 4, b-carotene; 5, zeaxanthin; 6, violaxanthin; (C) betalamic acid; (D) terpenoids: 7, limonene; 8, car-3-ene; 9, 1,8-cineole; 10, geraniol; 11,
linalool; 12, myrcene; 13, (E)-b-caryophyllene; (E) benzenoids and phenylpropanoids: 14, benzaldehyde; 15, phenylacetaldehyde; 16, phenylethylbenzoate; 17,
eugenol; (F) green leaf volatiles: 18, methyl jasmonate; 19, (Z)-3-hexenal; 20, (E,Z)-2,6-nonadienol.
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perianth in Mirabilis jalapa [15]. It was known since the beginning of the 1900 [448_TD$DIFF]that the
production of betalains is linked to the R and Y loci that control red versus yellow (R) and
the presence versus absence (Y) of color, respectively. The lack of betalain production in model
organisms has delayed the identification of the underlying genes. It is now known that
BvCYP76AD1 at the R locus encodes a cytochrome P450 enzyme that mediates the oxidation
of L-DOPA to cyclo-DOPA quinone [16], and that a MYB-like transcription factor encoded at
the Y locus (BvMYB1) regulates the appearance of color [17]. More recently, other genes
encoding key enzymes in the betalain pathway were identified [13,18], as well as the transpo-
son mutation that causes the red and yellow variegation of the perianth in Mirabilis jalapa [19].
Regulatory genes of pigment biosynthesis are discussed in Box 1.

Floral Scent
Floral scent consists of a blend of molecules of low molecular weight and high vapor pressure
that diffuse into the environment to signal the position of the flowers to pollinators. The major
classes of volatiles emitted from flowers are terpenoids, benzenoids, and phenylpropanoids
(derived from phenylalanine, Phe), and fatty acid-derived green leaf volatiles (GLVs) [20].

Terpenoids (Figure 2D) represent the largest and most diverse class of flower volatiles. Their
biosynthesis is catalyzed by terpene synthases (TPSs) that convert prenyl substrates, which
derive from units of isopentenyl diphosphate (IPP; Figure 2D), such as geranyl diphosphate
(GPP), farnesyl diphosphate (FPP), and GGPP into cyclic and acyclic terpenes [21]. Two major
routes contribute to the biosynthesis of these prenyl precursors: the methylerythritol phosphate
(MEP) pathway, which is active in the plastids, and themevalonic acid (MVA) pathway (Figure 1,
pathways in blue), which operates in the cytosol and peroxisomes [22]. It is generally accepted
that there is a physical separation between the sites of terpene biosynthesis within the cell:
monoterpenes and diterpenes are primarily produced in the plastids, whereas sesquiterpenes
and triterpenes are primarily present in the cytosol. However, secondary modifications to the
chemical structure of terpenes also take place in mitochondria, ER, and peroxisomes [23]. A
less thoroughly investigated pathway for the biosynthesis of terpenes is that mediated by the

Box 1. The Synthesis of Floral Metabolites Is Coordinately Regulated
Pollination signals are produced during the day or night depending on when pollinators forage for nectar and pollen, and
their biosynthesis is primarily regulated by the circadian clock [98]. For example, in flowers of white Petunia varieties
which are nocturnally pollinated by moths, LATE ELONGATED HYPOCOTYL (LHY [99]) and ODORANT1 (ODO1 [100])
are the master regulators of temporal emission of benzenoids. At night, ODO1 transcriptionally activates the genes of
the shikimate pathway, leading to increased production of the precursors of volatile compounds, while LHY tran-
scriptionally represses those genes during the daytime. Transcriptional regulators of the flavonoid pathway have also
been characterized in depth [101–103], and color patterns, such as dots, segments (picotee) and stripes (venation),
which guide pollinators [441_TD$DIFF]towards nectar or pollen rewards have recently been identified. For example, in the bumblebee
[442_TD$DIFF]pollinated Mimulus lewisii, which bears white flowers with a pink marginal picotee, the R2R3-MYB transcription factor
LIGHT AREAS 1 (LAR1) positively regulates FLAVONOL SYNTHASE (FLS) [443_TD$DIFF]which redirects flavonoid biosynthesis from
the pink [444_TD$DIFF]colored anthocyanidins towards the formation of colorless flavonols. Instead, inMimulus cardinaliswhere LAR1
is poorly expressed, the corolla accumulates red anthocyanins that attract hummingbird pollinators [104]. Veins of color
on the corolla (venation) that serve as nectarguides confer a pollination advantage to the flowers [105,106], and their
formation is also transcriptionally regulated. VENOSA in Antirrhinum majus [106] and DEEP PURPLE (DPL) in Petunia
hybrida [107] encode members of the R2R3-MYB family of transcription factors that are involved in this regulatory
process. Finally, the biosynthesis of betalains is also regulated by a R2R3 MYB-like transcription factor which has been
coopted from the anthocyanin pathway to regulate pigment accumulation in species of the Caryophylalles [17]. There is
also evidence that the biosynthesis of pigments and volatiles is regulated by common transcription factors. For example,
PRODUCTION OF ANTHOCYANIN PIGMENT1 (PAP1) from Arabidopsis thaliana coregulates the accumulation of
anthocyanins and emission of volatiles when expressed in transgenic Petunia hybrida and Rosa hybrida [108,109].
Similarly, the MYB-R2R3 transcription factor PH4 that controls petal pigmentation via acidification of the vacuole (from
which the name PH is derived [110]) regulates the production of the internal pool of phenylpropanoids in addition to color
[111]. Based on these observations, it is hypothesized that additional common switches that coordinately regulate color
and odor must exist in flowers [111], while other studies provide evidence for the (coordinated) upregulation of primary
metabolism to support this enhanced investment in the production of secondary metabolites such as pigments [112–
114].
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activity of cellular phosphatases. Despite the fact that geraniol synthases (which are TPSs) have
been cloned from many plant species, a study conducted in the early 1980s had already
suggested that terpene alcohols such as geraniol, nerol, and farnesol could be produced from
GPP and FPP by the activity of phosphatases [24]. The genetic and biochemical evidence that
this alternative biosynthetic route actually occurred in planta was only recently published. The
identification of RhNUDX1, the enzyme responsible for the production of geraniol in rose petals,
and the demonstration that RhNUDX1 hydrolyzes GPP to GP, which is further converted to
geraniol by an as yet uncharacterized cellular phosphatase, provided such evidence [25].
Intriguingly, RhNUDX1 is active in the cytosol, an unusual subcellular compartment for the
synthesis of monoterpenes, which generally takes place in the plastids. The driving force that
resulted in the evolution of this alternative geraniol production system in cultivated rose, and the
origin of GPP used by RhNUDX1 to synthesize geraniol, remain an enigma. Exchange of IPP
and GPP between subcellular organelles has been indirectly suggested in many studies
[26,27]. A transporter is probably involved in this exchange but has not yet been identified.

Another class of volatile compounds emitted from flowers are the derivatives of the amino acid
Phe (Figure 2E), which is primarily synthesized in the plastids through the arogenate pathway
(Figure 1, pathway in black) and further modified by enzymes present in the cytosol and
peroxisomes [28]. Flowers of Petunia hybrida that produce and release large amounts of Phe-
derived volatiles and benzenoids served as a model to study the biosynthesis of Phe. In these
studies the enzymes PREPHENATE AMINOTRANSFERASE (PPA-AT [29]) and AROGENATE
DEHYDRATASE 1 (ADT1 [30]) that catalyze the formation of Phe were identified, as well as an
alternative cytosolic biosynthetic route in which phenylpyruvate aminotransferase uses Tyr as
amino donor for the production of Phe [31]. By measuring the emission of volatiles emitted by
flowers of transgenic P. hybrida lines, it was discovered that the arogenate pathway is the
primary route for the synthesis of Phe, and the cytosolic synthesis of phenylpyruvate was
boosted whenmetabolic input to this pathway is reduced. Similarly, suppressing the flux of Phe
from the plastid to the cytosol through silencing of CATION AMINO ACID PHE TRANSPORTER
(PhpCAT) also results in upregulation of the cytosolic Phe biosynthetic route [32]. It is currently
unknown whether alternative cellular reservoirs for aromatic amino acid production are present
in the cell, and little to nothing is known about Phe catabolism in plants [33]. From the cytosolic
pool of Phe, benzenoids (C6–C1), phenylpropanoids (C6–C3 backbone), and phenylpropanoid-
related compounds (C6–C2) are synthesized. In a series of reactions that occur in the cytosol,
Phe is deaminated by PHENYLALANINE AMMONIA LYASE (PAL) to trans-cinnamic acid (CA)
and then to benzoic acid (BA), the precursor of benzenoids and phenylpropanoids [34].
Alternatively, in the peroxisomes CA is converted to benzoyl-CoA via the b-oxidative route,
and this is then exported to the cytosol where the final steps of the biosynthesis of phenyl-
propanoids take place [35,36]. The direct conversion of Phe to phenylacetaldehyde has also
been reported [37].

Finally, flowers also emit volatile fatty acid derivatives (Figure 2F) – aldehydes, alcohols, and their
esters – that are produced in plastids and peroxisomes (Figure 1) from the C18 fatty acids,
linoleic and linolenic acid (Figure 2) through the activity of LIPOXYGENASES (LOXs) (Figure 1).
Sometimes these compounds are referred to as green leaf volatiles (GLVs) because they are
also released when green plant tissue is damaged [38]. Nevertheless, they are also important
compounds of the floral bouquet and, for example, mimic the sex pheromones of some insect
pollinators [39,40], as well as herbivore-induced volatiles that attract natural enemies of plant
herbivores such as caterpillars [41].

Although the pathways leading to the production of volatile compounds are now relatively well
established, the question how volatiles are released from cells into the atmosphere is still largely
unresolved (Figure 1). In the past, it was suggested to occur via passive diffusion, but it was
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recently reasoned that an active biological process must be involved [42]. Evidence for such an
active process comes from several studies. For example, in petals of Petunia, the expression of
an ABC transporter, PhABCG1, was shown to be controlled by ODORANT1, a transcription
factor that also controls the expression of 5-ENOLPYRUVYLSHIKIMATE-3-PHOSPHATE
SYNTHASE (EPSPS), encoding one of the key enzymes in benzenoid biosynthesis [43]. Other
evidence for such an active mechanism is the rise in volatiles emission observed when VESICLE
ASSOCIATED MEMBRANE PROTEIN (VAMP271) was downregulated [44]. Given that
VAMP271 mediates the trafficking of vesicles to the plasma membrane it was proposed that
a mechanism similar to the secretion of hydrophobic compounds (lipids and pigments) may
also be involved in the emission of volatiles. Finally, a role for lipid transfer proteins (LTPs) in
terpenoid emission, likely in conjunction with an ABC or PDR transporter, has been suggested
[45].

Post-Transcriptional Trade-Off Between Color and Odor
The lack of floral pigmentation that co-occurs with the emission of floral scent is an eye-
catching manifestation of the trade-off between color and odor observed in flowers of many
species. In some colorless flowers, CAROTENOID CLEAVAGE DIOXYGENASEs (CCDs)
contribute to pigment degradation via oxidative cleavage of double bonds redirecting the
pathway from the synthesis of colored carotenoids towards the formation of volatile apocar-
otenoids [46]. The lack of yellow pigmentation in white varieties of Chrysanthemum morifolium
is due to the activity of a CCD enzyme [47], and this also holds true for the emission of volatile
apocarotenoids from Osmanthus fragrans [48] and Crocus sativus [49,50], which increases
as flowers develop and sexually mature. CCD4 enzymes that cleave carotenoids to yield
the volatile b-ionone have been also isolated from flowers of Malus ! domestica (apple),
Rosa ! damascena (rose), and Arabidopsis thaliana [51]. Interestingly, a recent study on
the evolution of flower color in the Brassicaceae family revealed that a mutation in the functional
CCD4 of the ancestral white-flowered Brassica oleracea caused the development of yellow
flowers such as those of B. napus and B. carinata. Because diurnal pollinators generally
prefer yellow-colored to white flowers, it has been speculated that the predominance of the
yellow-colored lineage of Brassica accessions could have arisen from cross-pollination events
mediated by the innate preference of pollinators [52].

Floral Rewards: Nectar and Pollen
Nectar contains sugars, amino acids, and volatile compounds that attract and reward polli-
nators [53], together with toxins that deter unwanted visitors [54,55]. The chemical composition
of nectar varies between plant species, with sucrose, glucose, and fructose constituting
between 8% and 80% of its dry weight. Among angiosperms, some nectars are dominated
by hexoses and others by sucrose. The hawkmoth- and hummingbird-pollinated self-compati-
ble Nicotiana attenuata, for example, produces nectar rich in sucrose and hexoses, as well as
numerous secondary metabolites [46]. Brassica rapa, which consists of self-compatible and
-incompatible varieties, produces hexose-dominated nectar, and Arabidopsis thaliana, a self-
compatible self-fertilizer, has nectaries that produce volatiles and hexose-rich nectar [56]. A
recent study revealed that SWEET9, a member of the SUGARS WILL EVENTUALLY BE
EXPORTED gene family that is located in the plasma membrane, encodes a polypeptide with
sucrose transporter activity that is crucial for nectar secretion [56]. Although floral stalk starch is
likely mobilized to sucrose and imported into the nectary via the symplasm [57], SWEET9
appears to be responsible for sugar efflux from the nectaries, and an important role has been
suggested for sucrose phosphate synthase in the remobilization of nectary starch to support
the secretory process [58]. This method of sucrose secretion is likely not confined to floral
nectar because species that harbor extrafloral nectaries also contain SWEET9 homologs.
Intriguingly, the latter study additionally demonstrated that SWEET9 was either conserved or
has been independently co-opted for nectar secretion in plants of the Rosaceae and
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Asteraceae families [56]. Sucrose is delivered to the flowers following the source to sink
pathway [58], which includes both SUCROSE UPTAKE TRANSPORTER (SUT) and SWEET
transporters. Our understanding of the site of synthesis and supply of precursors for terpenes,
phenylpropanoids, and other volatile precursors remains somewhat fragmentary. However,
several lines of evidence suggest that these compounds are synthesized in the flower following
supply of primary metabolite precursors such as sugars or amino acids produced by photo-
synthetically active source tissues. First, expression data indicate that the genes encoding
constituents of the biosynthetic pathways for the production of Phe and fatty acids from sugars
and amino acids are all expressed, and in some instances more abundantly, in floral tissues
than in source leaves [59]. Moreover, application of RNA-sequencing technology in model
plants has identified biosynthetic genes whose expression is floral- or pollen-specific, proving
that, at the very least, these reactions occur exclusively in these tissue types [60]. Second,
although there are several inventories of proteins enabling the flow of sugars and amino acids
from source to sink, only a few, if any, describe proteins capable of mediating intracellular
transport of secondary metabolites. Finally, metabolomics of floral tissues, nectar, and pollen
reveals that these tissues have highly distinctive metabolomes –with a considerable number of
the constituent metabolites being tissue-specific [61] – a fact that is only consistent with de
novo biosynthesis in situ. Studies of amino acid transporters have revealed the presence of a
multitude of transporters with overlapping function, and several of these transporters are highly
expressed either in source leaves or floral tissues ([62], recently reviewed in [63]).

Floral Signals and Pollination Success
Flowers depend on flower-visitors for their reproductive success, and flower-visitors depend on
pollen and nectar to nourish themselves and their offspring. Because of this reciprocally
beneficial interaction, the evolutionary trajectories of floral signals in unrelated plant lineages
have sometimes converged (Box 2 provides a detailed discussion of the evolution of floral
signals). Thus, flowers pollinated by animals with similar behavior and morphology share
common floral traits, a process referred to as pollination syndrome. In respect to color,
for example, nocturnally pollinated flowers are often white or pale-yellow, whereas diurnally
pollinated flowers display a wide array of chromatic nuances. Because many nocturnal insects
have sacrificed color vision to increase contrast sensitivity [64,65], white flowers that glare at
night can be found more efficiently. From a biochemical perspective, the loss of color in flowers
can be achieved via reduced but also increased production of specific molecules. For example,
the white color of the moth-pollinated Petunia axillaris flowers is attained by reduced
accumulation of anthocyanins, accompanied or not by increased accumulation of flavonoids.

Box 2. Pollinator-Mediated Evolution of Floral Signals
The diversity of floral signals has evolved under selection mediated by biotic and abiotic ecological factors. Floral signals
and their biosynthetic pathways often evolve through co-opting pre-existing pathways and functions. This is evidenced
by pathways sharing enzymes such as, for example, the phenylpropanoid and the lignin biosynthetic pathways [115],
and a large part of the pathway for pigments such as carotenoids and anthocyanins and floral volatiles is also shared. In
floral mimicry, a key gene for signal production has evolved by gene duplication from a housekeeping gene involved in
fatty acid metabolism [116]. Many volatiles, pigments, and even some rewards are thought to have shifted from a
primary defense function to the attraction of pollinators [117,118] as floral signals evolved under the trade-off between
attracting mutualists, being cryptic, or even deterring antagonists. This trade-off can be expected to set an ecological
limit to the detectability of flowers, and may explain why many flowers are not excessively showy [119]. Some
experimental studies have indeed shown that augmentation of floral scent increases herbivory but not necessarily
pollination [120]. Thus, positive directional selectionmediated by pollinators on floral signals may not always lead to
an evolutionary increase in signal intensity [121,122]. An elegant way for plants to circumvent such ecological trade-offs
is an alteration of floral signals after herbivore attack through phenotypic plasticity. As an example of phenotypic
plasticity, tomato and cabbage flowers change their floral signaling after herbivore attack as a means of indirect defense
[123,124]. As a consequence, the flowers become less attractive to pollinators. Such plasticity is probably adaptive
because it limits the negative effects of defense or altered appearance to the times when herbivores are actually
attacking a plant.
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Because molecules of different chemical origin have different UV spectral properties, the
differential accumulation of specific metabolites may lead to changes in pollinator preferences
which may not appear obvious to the human eye. In the case of Petunia axillaris, reduced
accumulation of anthocyanins produces white UV-reflectant flowers, but the flowers are white
and UV-absorbent if concomitantly they also accumulate flavonoids. Because nocturnal moths
naturally prefer UV-absorbing flowers, accumulation of flavonols leads to higher insect-
visitation rates [66,67]. Similar UV spectral traits regulate pollinator preferences for diurnally
pollinated flowers. For example, flowers with a UV-absorbing center and UV-reflecting
periphery, also called bull’s eye flowers, are frequently pollinated by bees [68]. This typical
UV floral pattern is attained by a discrete distribution of pigments of different biochemical
origins: carotenoids in the floral margin and flavonoids in the floral center, which both appear
yellow to humans (a discussion on the regulatory genes involved in floral patterning is
provided in Box 1). Because studies on insect vision suggest that floral patterns such as
the bull’s eye and nectarguides can only be seen by insects in close proximity to the flowers,
these patterns may facilitate insect landing, and signal the direction and describe the
attributes of the reward [69–71]. Indeed, a mutation in the YELLOW UPPER (YUP) gene
that in Mimulus lewisii underlies carotenoid accumulation in the nectarguides, results in
improper orientation of the bees that approach these flowers [72]. From a distance, brightly
colored flowers that accumulate large amounts of anthocyanins or carotenoids, or both, may
better serve bird pollinators that indeed prefer red-colored or uniformly yellow-colored flowers
[68,73,74].

Association between specific floral scents and pollinators has also been described, but
primarily for insects because flowers pollinated by birds are usually scentless. For example,
the nocturnally moth-pollinated Petunia axillaris emits benzenoid volatiles to guide the animals
to the flowers [75], and the diurnally pollinated Mimulus lewisii emits a blend of d-limonene,
b-myrcene, and (E)-b-ocimene that attracts bumblebees [76], whereas pollination by scarab
beetles is often associated with the emission of methoxylated aromatic volatiles [77]. Recently,
it was described that the de novo expression of genes for the production of benzenoid
compounds drove a shift from bees to moths as pollinators, whereas loss of function of
cinnamate-CoA ligase caused a loss of scent that marked the transition from moth to
hummingbird pollination [78]. Floral scent is a dynamic trait. The production of volatiles is a
function of gene expression, biosynthesis, and sometimes degradation that rapidly change
during the day. Furthermore, volatile emission rates increase with temperature and/or light,
while the wind propels their dispersal. Thus, floral scent can fulfill far more signaling functions
than color, shape, or texture. In addition to serving as distal [54] and proximal [79] attractants of
mutualistic pollinators, floral volatiles also repel florivores as well as nectar and pollen thieves,
and protect floral organs from bacteria and yeasts. These multiple functions can be attained
with the specific dosage of different molecules blended together in one flower bouquet. For
example, flowers that emit benzylacetone and nicotine simultaneously attract pollinators and
repel nectar thieves [80]. A recently published review uses linalool as an example to describe the
multiple physiological and ecological functions that flowers implement with the synthesis of a
single volatile molecule [81]. The responses induced by linalool and its derivatives range from
attracting pollinators and their herbivore larval offspring to deterring florivores, repelling facul-
tative visitors, and antagonizing bacterial growth; the precise responses can be enantiomer-
specific. This multitude of functions suggests that linalool has been co-opted to attain novel
physiological functionality. From a biochemical perspective, this can be seen as an attempt to
gain multifunctionality by channeling available resources in one biosynthetic direction only.
Such a strategy becomes crucial to properly allocate resources to reproduction and/or defense
if during flowering the plant is being attacked by herbivores and other pests [82]. In addition to
linalool, physiological multifunctionality has been described for many other volatiles emitted
from flowers [83].
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Besides mediating reproductive success, floral signals also act as a filter for pollinator attraction
and thus mediate assortative pollinator attraction. The consequence of this can be (partial)
reproductive isolation, termed floral isolation [75,84–87]. [449_TD$DIFF]By contrast, pollinator innate prefer-
ences for floral signals can be overridden by associative learning that promotes floral
constancy, the preferred visitation of flowers of the same type during a foraging bout [88].
Any neutral floral trait (color or scent) for which the animal does not show innate preferences can
be associated with a reward (e.g., nectar), typically when the signal is honest [89] (attributes of
floral traits are discussed in Box 3). Bumblebees and bees are fast learners, and can pair pollen
and nectar with color and odor [70,90], as can ants and other pollinators [83].

Concluding Remarks
Flower visitation by animal pollinators is driven by the production of floral signals and rewards
composed of an array of metabolites that entice the animals. Studied conducted in Petunia,
Mimulus, and Antirrhinum established the connecting link between genes underlying the
synthesis and regulation of metabolites with flower phenotype and pollinator response [91].
Correlating genotype to phenotype is nowadays facilitated by the availability of larger genetic
resources and tools for genetic engineering. However, deciphering animal behavioral
responses to floral stimuli is not easy. When nocturnal moths were presented with Petunia
axillaris plants modified to show conflicting signals (red-colored, volatile-emitting flowers, or
white non-emitting flowers), they displayed conflicting behavior and could not make a choice
[75]. Experiments with 3D-printed flowers with scent and color added constitute a novel tool to
assess animal responses [92]; although for some aspects this approach is successful, the
system is limited by the fact that it is static and not dynamic. In addition to shape and texture,
floral traits such as volatile emission and nectar secretion change rapidly in response to internal
and external stimuli, and, although slower, color also changes (see Outstanding Questions).
Assessing animal responses to floral signals in a natural environment, although complicated
by the numerous biotic and abiotic variables, still represents the best strategy to have a
holistic view of animal responses to floral metabolic signals [54,93,94]. As the phenological
mismatch between plants and pollinators increases [95], a better understanding of the genetics
and metabolic processes that underpin pollinator preferences could be used to select
resilient plants and plants that offer the proper amount of reward for improved ecological

Box 3. Truthfulness of Floral Signals
In general, floral signals can be ‘honest signals’ and thus indicate the presence or amount of reward present in a flower.
Direct honest signals emanate directly from the reward, such as the scent of nectar and pollen, or humidity [125,126].
Alternatively, floral signals may show a quantitative association with reward despite being emitted from other parts of the
flower [127]. A typical example is flower size – because larger flowers may producemore rewards. Sometimes a specific
volatile, for example phenylacetaldehyde in Brassica rapa, is associated with reward [127]. Because there is no known
biochemical connection between phenylacetaldehyde and nectar production, this association has likely evolved
through selection by pollinators. Indeed, pollinators may prefer plants with honest signals, because it increases their
foraging efficiency, and thus punish ‘cheaters’ by avoiding them after a visit.

An interesting twist to this story is the fact that clearly not all floral signals are honest. For example, many plants with
showy flowers never produce any rewards [128]. Such obligatory rewardlessness is especially common among orchids,
but has independently evolved in several other plant families [129]. Until now the molecular basis of rewardlessness, in
other words which genes involved in nectar production became non-functional, is unknown. In plant groups such as the
orchids, for which nectarlessness has been suggested to be ancestral [130], it would also be interesting to show how
nectar production in rewarding lineages evolved at a molecular level. Rewardlessness can be successful when
pollination is highly efficient, and the plant does not require many pollinator visits for fertilization of its ovules, and/
or plants produce signals that are highly attractive even without an association with reward. Such signals evolve under
‘sensory exploitation’ – which means that they target a sensory apparatus that has evolved in a different context, for
example in the oviposition or mating behavior of the pollinator. The result of this process is sometimes floral mimicry, in
other words the flowers imitate a ‘model’, for example an oviposition substrate or a mating partner. Many aspects of the
biochemistry of floral mimicry are yet to be discovered, but mimicry provides some fascinating examples of convergent
biochemical evolution, for example in desaturase enzymes in plants whose products mimic insect sex pheromones.

Outstanding Questions
How can we link genes to metabolic
phenotypes and finally to pollinator
responses? The search for metabolic
differences among species and natural
accessions followed by strategies of
gene mapping and complementation
analysis is the first and necessary step
to link phenotype to genotype. There-
after, experiments that assess the
response of animal pollinators to plants
that differ for their floral phenotypes will
be necessary to establish the link
between phenotype and pollinator
response. Technological advances in
the fields of genomics and metabolo-
mics have facilitated the identification
and characterization of the genes that
underpin metabolic traits. Further-
more, controlled field experiments with
transgenic plants are currently under-
way to examine pollinator responses to
modified floral traits in natural
environments.

What are the physiological and eco-
logical costs of floral signal produc-
tion? Plant exposure to biotic and
abiotic stresses during flowering
depletes floral resources to pollinators
(i.e., production of signals and
rewards), and hence impair seed set-
ting and finally plant performance.
Studies performed under controlled
environment and field experiments that
measure plant fitness under adverse
conditions can be used to investigate
the impact of those stresses on polli-
nation performance.

How can we identify which flower
metabolites mediate the interaction
between a particular plant species
and its pollinator(s)?
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plant-pollinator restoration services [96]. The majority of the studies on plant–pollinator inter-
actions have so far been conducted in model plants and in plants of relevance for ecological
and evolutionary studies, but far less in plants of agronomical relevance. However, it should be
considered that the yield of pollinator-dependent crops is increasing worldwide and, in
particular, the yields of crops with high value such as fruits, nuts, and stimulants depend
highly on pollination success [97]. Therefore, the introgression of floral metabolic traits in these
crops could also be taken into account in plant breeding programs.
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